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current density towards future ElectRodes for Fuel Cells

Further Understanding Related to Transport limitations at High

Characterization of the CCL structure

Spatial distribution of the materials
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namre
COMMUNICATION

AR TICLE

Electrodes / CL: Composite of ionomer, Pt catalyst covered
mesoporous carbon, and pores

M Lopez-tiana'?, L Gustaz' T, Prime

F. Bayle-Gullervand" 2, F. Chiswchisnn

' Reaction at 3-phase boundary
Performance & Durability

* electronic conductivity
* jonic conductivity

e gas supply dkdi

IEAPPLIED MATERIALS
CUINTERFACES

Research Article
9

Uncertainty about ionomer distribution inside the electrode.
Quantitative analysis iS difficult: g:taa':;ittiztli_‘;ir;?ssuu Analysis of lonomer Structure in Fuel Cell

* Small size in the order of few nanometers, depends on humidity and
temperature

S

GO - e i

L] o STILE | Arcibind 1D S DO0E | Pkl haed 35 Ser 200
Three-dimensional analysis of Nafion
layers in fuel cell electrodes

e, A, Morn'S, 5, Escrisano '™, i1, Josnes
E G Gebal't

200 nm

* 3D-geometry

* Lopez-Haro, Guetaz et al. (CEA): Thickness of 7 nm with electron
tomography (HAADF-STEM) at model electrodes

* Morawietz et al. (UES): Thickness measured with adhesion analysis

of catalyst layers. Distribution from ~ 4-12 nm. Adhesion
Public workshop, 06/07/2022, DLR/Stuttgart + visio Characterization of the CCL structure
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lonomer layer / nm
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Atomic Force Microscopy
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 AFM uses a small tip (1-25 nm) to scan the surface of a sample to get
topographic information and several other properties simultaneously.

 Measurements can be done at ambient conditions and temperature
and RH controlled environment

Public workshop, 06/07/2022, DLR/Stuttgart + visio Characterization of the CCL structure 6
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s;jo Atomic Force Microscopy (AFM)
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Qun

« Tapping PeakForce QNM/TUNA-Mode (Bruker Corp.):

 Evaluation and mapping of adhesion force, phase shift, stiffness
(DMT modulus), maximal force, dissipation energy, deformation
and current.

PS-LDPE Adhesion (5 pum)

Deformation Stiffness Energy Dissipation
AF/ Ax
Public workshop, 06/07/2022, DLR/Stuttgart + visio Characterization of theg CCL structure
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g5t Atomic Force Microscopy (AFM) o o
N ¢ |

%nd o w®

» Using AFM one can discern the different components in the PEMFC and PEMWE electrodes. They consist of

catalyst, support materials and , the distribution of these components affects MEA performance
and degradation rates.
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o) 24 e | O
G 55 IR 1 S
e Strom e
= ~—— Adhasion 3 [a
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Distance / nm

Optical microscope

Adhesion  200.0 nm Deformation 200.0 nm
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Stand 1o *°

414.3 nm

Height Sensor

DMTModulus
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Analysis of the CCL surface

lonomer bridges

646.1 nm

Carbon

lonomer

Characterization of the CCL structure

Clean Hydrogen Co-unded by
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Nanomechanics AFM measurement
with high resolution tips 2
< 2 nm tip radius

3 different phases visible in
stiffness, adhesion and deformation
channels

Pt particles may be seen under a
layer of ionomer

Analysis of single Pt Particles
difficult



the European Union

AFM on CCM cross-sections Cl b

112.6 nN

)

| -143.0nN

Reinforcement

Peak Force Error 5.0 p

| R 0 pum
Deformation Current

. ' b e Cutting with microtome without embedding
i | * Clamped between Polystyrene plates for cutting
 Measurement of “Blockface”

* Different layers can be analyzed due to different electrical

25 um and mechanical properties

* Thickness and material distribution

 Measurement of conductivity possible due to metal coated
AFM tips (ry, = 25 nm)

Public wor@ﬁg‘pa, 06/07/2022, DLR/Stuttgart + visio Characterization of the CCL structure 10
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Qun

£

Sy
Stand 1o *°

* lon cutting at -100°C, smooth surface at CL

* Porosity using bearing area = 46 % for area of 1 um?

* Measurement at ambient conditions gives different thickness of

ionomer layers then measured with no humidity.
NP E P NERE R

70.0 nm

I 1 1
0.0 1: Height Sensor 1.0pm 0.0 1: Height Sensor 1.0 pm
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G * AFM on CCM i1on-cut cross-sections
\ g

R Co-funded by
USWCl the European Union

SEM of FURTHER-FC Ref MEA

s/8/2021
WD 12mm
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ok Analysis of the CCL surface { e [

g Electronic Conductivity

5
R -

186.8 nm

 Comparison of the
electronic conductive area
between I/C0.5and 1.1

ML -237.9nm . -113.2nm

* |lonomer distribution visible
due to no electronic
conductivity on ionomer
layers, also adhesion and
stiffness show same results

* Much lower conductive
area for I/C 1.1 at the
surface (27 % /55 %)

. TN 3 ‘
i Gy )
e

) ¥
i »
>

Peak Currnt

Public workshop, 06/07/2022, DLR/Stuttgart + visio Characterization of the CCL structure 12
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Electron Microscopy

Public workshop, 06/07/2022, DLR/Stuttgart + visio Characterization of the CCL structure 13



f 3D FIB SEM: CCL porosity

3D FIB-SEM principle

EM (image

FIB (rr)hivlling) SR
// : ‘.VS'IVEM (images)

SEM (images)

&
FIB (milling)
? &) b
L 4 > -
W :

3D FIB-SEM'
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Stack of image acquisition
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3D FIB SEM: CCL porosity

Segmentation of the 3D image

Backscattered electrons
_(detector inside column)
Cni o .

Secondary electrons
(detector inside mi ope chamber)

Red

Porosity: 55%

The pore size distribution analysis will be presented by Ahmed Maloum ( INP-Toulouse) in the modelling presentation

4 [ I S S T e e ey e ) e e ) e W L
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., ° E-tomography: Pt nanoparticle distribution
et | 0N the carbon support

Electron-tomography principle

A
Socuon e Tilt series of images
o) is recorded
Vv @
700 | ) o )
S\ R .ol
Kl

3D structure of the

specimen is computed
(b)

[@!
W4 x = éo
BT Sams?
CCD camera

Co-funded by
the European Union

1. Pt NPs = HAADF-high angle annular detector to avoid diffraction contrast.
2. C support = ADF-annular detector to enhance C contrast.
3. Use of advanced algorithm for 3D image reconstruction that reduces the NP artefacts

Tilt series images acquisition

g 'y
Catalyst powder from Tanaka (46.5 wt% Pt on high surface area carbon)

Public workshop, 06/07/2022, DLR/Stuttgart + visio



E-tomography: Pt nanoparticle distribution -
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on the carbon support
3D image of Pt/C Nanoparticle size histogram
Outer Pt 356 Pt NPs = 294 Inner Pt NPs + 62 Outer Pt NPs
Inner Pt 025 = outer P
™ A~ Mean: 2.4 nm W _inner| Pt
_UliOOIl) 0.20
= Mean: 3.2 nm
1] d_outer= 3242118
ﬁ 015 drinner= 23620 75
g 0.10 1
0.05 4
0.00 - T u:
2 3 4 ] 7

Equivalent diameter (nm)
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Impossible to image by high resolution TEM the ionomer in the usual thin MEA cross-section that is embedded in epoxy resin

Development of the cryo-

: : Thin slice of cut MEA was
ultramicrotomy preparation . The ionomer thin layer can be observed
MEA in a drop of frozen water grid

M. Salvado et al., J. Power Sources, 2021

Public workshop, 06/07/2022, DLR/Stuttgart + visio FURTHER-FC: Characterization of the CCL structure - Spatial distribution of the materials
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%o« °§’ e
G"‘.“’ant:lto'\“&
lonomer filament bridging two Pt/C Thin layer of ionomer on Pt/C

agglomerates lonomer linking two Pt/C agglomerates agglomerates with different thickness
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Hng o E-tomography for 3D analysis

3D volume reconstruction

ADF/STEM tilt series acquisition B

/C graphitized

- Difficulty in finding an area for high resolution tomography with no C support

overlapping for the high tilt angle
- The 3D image reconstruction is still challenging due to the lack of contrast between

the ionomer and C support == experiments will be performed on Pt deposited on

graphitized carbon

Public workshop, 06/07/2022, DLR/Stuttgart + visio FURTHER-FC: Characterization of the CCL structure - Spatial distributiof
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AFM and electron microscopy are complementary techniques for CCL microstructural characterization
* AFM:

- Measurement under different RH conditions
- Measurement of mechanical and electrical properties gives high contrast between Pt/C and ionomer
- Analysis of CCL surface revealed an ionomer layer particularly thick for the high I/C ratio (electrical and mass transport properties are affected)
* Electron microscopy
» 3D FIB/SEM :

- 3D image of the porosity in representative volume (500 um?) = to be compared with AFM to evaluate the porosity evolution with RH
»TEM
- E-tomography : Pt NP distribution of Pt on carbon support

- Resolution is high enough to see thin (>1 - 2 nm) layers of ionomer (higher resolution than AFM) however 3D is needed but difficult.

- Images revealed some ionomer characteristic features (ionomer filaments, ionomer linking Pt/C agglomerates, | |

U The 3D distribution of the ionomer is still under study: improvement of the different
techniques and comparison of results are under progress

21
Public workshop, 06/07/2022, DLR/Stuttgart + visio FURTHER-FC: Characterization of the CCL structure - Spatial distribution of the materials
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Multiscale characterization

FURTHER-FC MEA 1 Cathode catalyst layer surface
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Multiscale modeling
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