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Heterogenous operation from inlet to outlet even in well

designed stack (homogeneous compression) because of evolution of
concentration of reactants and product and temperature
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3D schematic of bipolar plate and MEA
cross-section in the stack active area
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Gas diffusion
layer (GDL)
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Assembly
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Homogeous operation between each
land/channel repeat unit in a well designed

stack (homogeneous distribution of products and
evacuation of water in all the channel &
homogeneous compression)

Heterogeneous operation at the
land/channel scale because of GDL transport
limitations

Heat transport limitation in GDL
- T gradient between membrane and bipolar plate
Several °C at high current density

- Lower RH in the CCM than in the BP
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A multiscale approach combining two imagery techniques
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From GDL structure to transport properties

MPL structure from FIB-SEM

+ GDM structure from X-Ray CT

—> Computation of O, effective diffusion tensor (MPL)

- Through plane effective diffusion coefficient

- Integration in the 2D cell model : through-plane +

along channel (land/channel averaged)

» Knudsen diffusion is important in the MPL matrix.

» The MPL has a quite significant impact on the GDM-
MPL diffusion property compared to the GDM alone.

» The MPL-GDM overlap region has a quite noticeable
impact on the diffusion resistance of the assembly.

» MPL cracks have a relatively weak impact on the GDM-
MPL assembly diffusive resistance, with a reduction by
about 10%.

Demanding and must me done for each GDL
Next step: include the two phase flow
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Schematic of the voltage losses across
the CCM
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Neyerlin et al. 2007 J. Electrochem. Soc. 154 B279
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AC cc
Ucett = Urev — Ronm * 1 — Muor — RH+f’eff I — Mogrr — RH+Ijeff I = Ntransport(gas)

] ) ACL: Anode Catalyst Layer
Neglect losses at the anode (kinetic and transport) CCL: Cathode Catalyst Layer

Ucell = Urev — NMorRrR — ROhm 1= I - Ntransport(gas)

Polarisation curve loss breakdown

1.0 ORR losses

Voltage [V]

o
.\,

o
o

@ 50%RH

o
w

0 0,1 0,2 0,3 0,4 0,5
Current density [A/cm?]

Hyp. : Decoupling between electrokinetic and transport losses
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Reactants
outlet

@ liten
_

Best possible control of conditions across the active area

Differential cell

Coolant
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Current (CE)

Current (WE)

Potential (CE)

Potential (WE)

PTFE

Hardstop gasket

How to quantify the losses? G oo

Flow field

MEA Assembly

Membrane
Sub-gasket : [ ™~

GDL

German Aerospace Center
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> High reactant stoichiometry ( > 30 @ 3A/cm?)
—> Minized inlet to outlet « heterogeneity »

» Small land & channel (250 um)
—> reduced land/channel « heterogeneity »

- In-plane operation as homogeneous as possible

» Gas velocity in channel similar to that in stack
- Representative of part of the active area of a stack

Control of T, RH, PH,, PO,, Ptot
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Proton transport resistance thanks to EIS measurements
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How to properly quantify them?

tand to ¥
EIS under H,/N, _ No ORR
0,10
Experimental data
Fit
E
O
£
= =
O 0,05
NS
N
£
' RCCL
HYef fective
Ryr 30°C, 100%HR, 1 bar
0,00
0,00 0,05

Re(Z) / Ohm.cm?
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Ideal case: Ryp ~ Ropm ~ RiE™7%" + RSPL 5 < REPL < 10 mOhm. cm?
. CCL CCL
RCCL . RECL
. membrane GDL e H™.eff
If not: Ryr ~ Ronm ~Ry+ t R + RCCL 4 RCCL
e H*eff

Proper quantification of Ryp,needs to fit the whole impedance Zy, /y,

Transmission line model —IR_.AT } ‘ 1
blocking electrode 1 1

ceeL Electrochemical —
dl

REEL is neglected -|_ T T

coth \/i - Ry er - Car™*
_ ccL
ZHz/NZ - ROhm + RH"')eff cCL
\/i ‘@ Ryiopp Car-
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-Im(Z) / Ohm.cm?
o
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0,00

0,00

Proton transport limitations without ORR

@ IltenJ How to properly quantify them? HCO.fundedby
the European Union
: CCL CCL
EIS under H,/N, _No ORR o coth (Jl W Ry et Cgp )
ZHz/Nz = Ronm + RH+,eff
i-w-RCCL . cocL

Experimental data HYeff “dl

Fit Hyp.
> RSELis neglected
» ldeal capacitor
» No Faradaic reaction : blocking Working Electrode (WE)
Limits
» Faradaic reaction : HOR of H, crossing membrane from CE
—> Limit the minimum frequency for a proper fit (~few 10 Hz)
» Inductance of the connections
» Impedance of the potentiostat
—> Limit the maximum frequency for the fit (~few kHz)
Ryr 30°C, 100%HR, 1 bar » Non ideal capacitive behaviour
— Use Constant Phase Element (CPE) instead of C

Siroma et al. 2015 Electrochimica Acto 160 313

RCCL
HYef fective

0,05 0,10
Re(Z) / Ohm.cm?
More accurate with larger resistance, e.g. smaller geometrical active surface
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whole impedance Zy, o,

IHER, . - - .
O e
N Proton transport limitations with ORR
%I & “ten_l Low current density
tand to
EIS under H,/O, ORR Proper quantification needs to fit the
0.6 ' ' ' ' ' ' — F Proton conc lutmg phase
80°C, 80%RH, 1bar, P02=0,2 bar —S—Exp. E—
—O— Sim.
0.5+ 40 mA/cm? i

_I

CcCL
Cd[

Electrochemmal
interface
Electromc conducting phase

04 |
£
S
£
5 03 :
N
£
0.2 1 RCCIL
: CCL CCL pol,ORR
coth{ |i-w-Rpi’ s Cy —RCCL
0.1 . Hteff
Zu 0, = REE:
2/02 H™eff RCCL
o L2 . w - RCCL . cccL . _POLORR
0o/ 0.2 0.4 0.6 0.8 1 1.2 Hteff " “dl RCCL
R ReZ [Ohm.cm?] H*eff
Oohm R
total
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EIS under H,/O, _ORR

Proton transport limitations with ORR
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Low current density

RCCIL
. pCCL . ~CCL pol,ORR
0.6 . . ; . . cCL HY.eff
80°C, 80%RH, 1bar, PO2=0,2 bar —S—Exp. ZH2/02 — RH"‘,eff'
—©— Sim. RCCILORR
05 40 mA/cm? . .., . pCCL . CCL pol,
P-w-Rpi'ep-Cagr™ + RCCL
H*eff

-ImZ [Ohm.cm?]
o ©
w BN

o
(N

| Hyp.
» No gas transport limitations at all
1 » Homogeneous operation across the CL

1 Limits
» No reliable analytical model when transport limitations can

0.1 1 not be neglected
—> Fitting at low current density (<0.1 — 0.2 A/cm?)
0 ; » Inductance of the connections
o/ o 04 06 08 (2 > Impedance of the potentiostat
R ReZ [Ohm.cm?] o ) .
Ohm Riotal —> Limit the maximum frequency for the fit (~few kHz)
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Oyt ¢ for different I/C In—plane H* conductivity of ultra-thin film measured ex-situ
Reference I/C = 0.8 C o .
II_I)EQZO thin film, 7 nm@ 80°C,80%RH _ O_tf_ll_m film — 1mS. cm_l
Jn—plane H
= LERO2 cCL eccL o . : . . .
£ Ot off = ol Theoritical effective CCL H* conductivity from ultra-thin film
B Sgeo * Ry o5f
3 o ¢ ° CCL theo @ 80°C,80%RH thin film By 2020 1
-g c 1,E401 ° . Oyt of ’ = 0+ — < 0.215mS.cm
o < ®
c & . @D2020 = (0,215, volume fraction of D2020 in CCL
e [ ]
0 O
S j 1,E4+00 ® 50 %RH T = 1, minimum tortuosity of the ionomer network
= . ® 80 %RH
'1; ® 100 %RH Experimental effective CCL H* conductivity
e
o 1,E-01 CCL ex °C 800 °C.809
, p.@ 80°C,80%RH _1 CCL theo @ 80°C,80%RH
0,4 0,6 0,8 1 12 2 <0H+’eff <20mS.cm™ > Oy+ off
l/C I L
ccL . / . Values for ultra-thin ionomer conductive films may
O+ o INCreases as I/C and RH increase not be representative

ecer = 6.5 - 10™%* cm, thickness of CCL
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JEE'Leff for different I/C
Reference I/C = 0.8

1,E+02
Z ccL _ €ccL o
= Onteff = s . pecL
© geo  “‘Hteff °
2T :
g c 1,E+01 ) A
o < °®
= Y
o _ ® Ps
o © .
s.D__ L&j 1,E+00 ® 50 %RH
= ® 30 %RH
= Y
5 ® 100 %RH
Q
hr 1,E-01

0,4 0,6 0,8 1

|/C

CCL

0H+’eff increases as I/C and RH increase

ecer = 6.5 - 10™%* cm, thickness of CCL
11/12/2024, FURTHER-FC, Final workshop, visio

Proton transport limitations G oo
What does FURTHER-FC teach us?
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Ratio of agﬁfeﬁ for different I/C

Reference I/C = 0.8

10,0

W 50 %RH
m 80 %RH
m 100 %RH

1,1

Ratio of the effective proton
conductivity of the CCL vs
reference CCL (S.cm™)

‘_I—"

o

o
=

|/C

1,2

Rlcﬁfeff ratio depends on RH for low |/C

- Water « independently » of ionomer plays a role in H* transport

Discussion on MEA performance limitations 16
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ccL : - Ratio of 0%t _ . for different Pt loading
Oy+ ofpas @ function of CCL thickness for HYeff
’ 2
different RH Reference 0.2 mgp,/cm? .,
. 2,5
3,5E-02 c > B 50 %RH
z 2a-
3 3,0E-02 ° 950 %RH o3 g 20 m 80 %RH
s . o <
—é T e ® 30 %RH © k= v m 100 %RH
e E” ® 100 %RH * = > 15
o] : S Y= ]
o v 2,0E-02 $ (@] 8
cC =
2 9 1,502 ° = 2 910
E Q ® —— =2 C ’
%;E 1,0E-02 8 20
Y ® J @
£ © 50£-03 s ) 2T 0,5
@ ° -
% 0,0E+00 ? ®= 3
- 0,0
0 0,1 0,2 0,3 0,4 0,5
0,1 0,5

Pt loading (mgPt/cm?) Pt Ic;ading (mgPt/r:':mz)

> aggfeff ratio does not depend RH

—> Similar overall behaviour for all RH
> GISELeff ratio does depend on Pt loading/CCL thickness and # 1
—> Difference in ionomer distribution through CCL?

11/12/2024, FURTHER-FC, Final workshop, visio Discussion on MEA performance limitations 17
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Scheme of Pt/C catalyst layer

Artist’s impression

Rgﬁ%eff proton transport across CCL

Does RgﬁLeff tackles H* transport limitations at the nm scale
e.g. inside the nanopores of the C???

- It is currently of paramount importance

Kobayashi et al. 2021 ACS Appl. Energy Mater.
Univ. Yamanashi
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ORR current density distribution across CCL

2.5
\ —100% RH
[\ — —60% RH
2 T=K '
[ A
\
] b, |
- 1.5 \
- N
[~ 4
S \
=~ 1
~
~ -~ N
0.5 | i et
Membrane Diffusion
Side Media Side
0 — —>

0 2 4 6 8 10 12 14 16 18

Catalyst Layer - x (um)

Neyerlin et al. 2007 J. Electrochem. Soc. 154 B279
11/12/2024, FURTHER-FC, Final workshop, visio
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Limits
> Rfﬁ%eff implies heterogeneous operation across CCL
- Not the same reaction rate on all catalytic sites

> RfﬁLeff losses due to H* transport across CCL

- No information on its impact on effective use of catalyst
or to kinetic losses due to heterogeneous operation

Discussion on MEA performance limitations 19
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What else can we extract from EIS?
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~ Electrochemcal properties from EIS
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EIS under H,/O, _ORR CCL
. pCCL . ~CCL poL,ORR
06 H*eff
. T T T T T T _ CCL 4
80°C, 80%RH, 1bar, P02=0,2 bar O Exp. ZH2/02 - RH"',eff'
—O— Sim. RCCL
05+ 40 mA/cm? _ “'pol,ORR

: cCL cCL
L@ Ryiper Cay™ + RCCL

Hteff
Limits
> RSSfORR does not give you any information on the catalyst
activity for ORR or the overall activity of your CCL

-ImZ [Ohm.cm?]

CCL
Ucet = Urev — Morr — Ronm * 1 — RH+,eff B Ntransport(gas)

If no transport limitations and correction from Ohmic drop and H*
transport limitation in CCL

o/ o2 0.4 0.6 0.8 1 1.2
ReZ [Ohm.cm?’] Ucorr = Ucen + Ronm 1 + RH+,€ff I'= Urev — Morr

CCL
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Low current density

o?s"HER%
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EIS under H,/O, _ORR
06 T T T T

80°C, 80%RH, 1bar, PO2=0,2 bar

05+ 40 mA/cm?

T

-ImZ [Ohm.cm?]
o o
w BN

o
(N

0.1

—Oo— Exp.
—— Sim.

0 E
0 / © 0.2 0.4 0.6 0.8
ReZ [Ohm.cm?]

11/12/2024, FURTHER-FC, Final workshop, visio

RCCL dNorr
pol,ORR dl
w—0

Simple Butler-Volmer:

( — ac F MoRr (1- ac)FT'IORR)
I = IO e RT — e RT
o 3RT
Tafel approximation: | nprr|>
acF
—ac F NoRr
I = IO e RT
— b~ b= 2L Tafelsl
NoRR = — na T o (2E10I0PE
RCCL — 2 If no transport limitations
pOl,ORR _ I

Discussion on MEA performance limitations
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Electrochemcal properties from EIS

Low current density

g liten
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EIS under H,/O, _ORR
0.6 . | , | |
80°C, 80%RH, 1bar, PO2=0,2 bar —6—§?<p.
S m.
05+ 40 mA/cm?
0.4

-ImZ [Ohm.cm?]
o
w

o
[N

0.1

0 E
0 / 1 0.2 0.4 0.6
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0.8

ReZ [Ohm.cm?]

Voltage [V]

1,05

0,95

0,9

0,8

0,75

0,7

Simulated I-V curve without transport limitations

Riotai= slope

Clean Hy

artners
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Exchange current density x4

0,2 0,4 0,6 0,8
Current density [A/cm?]

Discussion on MEA performance limitations
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EIS under H,/O, _ORR pcCL o dNorr p_ RT o
pol,ORR — dl T acF’ P
0.6 . . . . . . w—0
80°C, 80%RH, 1bar, PO2=0,2 bar o e
0.5+ 40 mA/cm? - RSSILORR — b If transport limitations have negligible impact
: I
N§ If Rg6lorg -/ > b transport limitations most probably not negligible
S ‘
N
=
0 / 0.2 0.4 0.6 0.8 1 | 1.2
ROh ReZ [Ohm.cm?]
m
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Fe o E Transport limitations from EIS

EIS under H,/0, _ORR But where is the famous second loop???

0.3 —— . . . ' Limits:
80°C, 90%RH, 1bar, PO2=0,05 bar o Exp.

o > CCL . . . .
_|0_78 A/cmzl —o—sm ]| RyolorR includes the coupling between kinetic & transport

0.25

-ImZ [Ohm.cm?]
o
N ©
(6)] N

e
—_
T

0.05 [
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EIS under H,/0, _ORR But where is the famous second loop???

0,50
May be due to transport limitations along/within the channel
0,40
Rc:hannel

0,30 Ret
T e [V
o anm “
_g Si m . ._/\/\/\/_ Cchlalnnel —
S 020 ~obpos |
"'E’ 0000 Oooo Cal R VRL‘I'
' 0,10 oo % 1 channel — zstoz _ 1

L= Rohm +
0,00 Ret+ ] — channel = VRet 26
0,0 0,1 0,2 0,3 0,4 0,5 0,6 R hannel 1O channel
-0,10
Re(Z) [Ohm.cm?] Chanderis et al. 2015 Electrochimica Acto 180 581
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Oxygen transport resitance thanks to LCA measurments
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Limiting Current Analysis (LCA) measurement principle and analysis

O oy N Co-funded b
tand 10\ O the I;luropea: Union
Pressure Dependent (PD) term:
-V for different O, concentration - Fickian diffusion in largest pores (d > mean free path O, ~ 100 nm
@ 80°C, 1bar)
80% RH; 2.54 bar

091 | Pressure Independent (PI) term:

08k \ - Knudsen diffusion in smallest pores (d < 100 nm)

0.7 - 110

o 100 | 80°C,80%RH l
> . ..-'.l...
@ 05/ — 20 . M y=2099x+27,4
S 80 R2=1,0
o & "
= o4f D, 70

03 O 60 =

50
02F J1im 40 PD=29.9s.m?
Pl =27.4s.mbar?
0.1 ' ' : ' ' ' ' ' ! 30
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Current density / A.cm 1 12141618 2 222426238

Total pressure [bar]
Baker et al. 2009 J. Electrochem. Soc. 156 B991
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German Aerospace Center

G g; . . . . o o
%, > £ Limiting Current Analysis (LCA) measurement principle and analysis Cofundedy
*and 10" the European Union
Pressure Dependent (PD) term:
-V for different O, concentration - Fickian diffusion in largest pores (d > mean free path O, ~ 100 nm
@ 80°C, 1bar)
09 . 80% RH; 2.54 bar .
Pressure Independent (Pl) term:
o8l - Knudsen diffusion in smallest pores (d < 100 nm)
- Diffusion within electrolyte (hydrated ionomer and/or water)
0-7r - Transfert through gas/electrolyte interface
06 - - Transfert through electrolyte/Pt interface
S 0
E Co2
0 05 A
g Pt lonomer  Gas Phase
(@) Poz
= 04r P E R Coes| Cgas = 7
0.3
______ Cog | | Cea=KuPo
0.2 :
J lim =Ko (ch_ciun)
0.1 I | I 1 1 I | | 1 7777(’;777;‘}1
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 —-D- .
Xo
Current density /A.cm? s
- —KpCr Kudo et al. 2016 Electrochimica Acta, 682
Baker et al. 2009 J. Electrochem. Soc. 156 B991 0 ~ > X
0
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A . N

I-V for different O, concentration

80% RH; 2.54 bar

09r

0.8 |

0.7 r

06

05

Voltage / V

04
03 F

0.2 F .
Jlim

01 1 1 1 1 1 L 1 1 1
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Current density / A.cm

Baker et al. 2009 J. Electrochem. Soc. 156 B991

11/12/2024, FURTHER-FC, Final workshop, visio

Limiting Current Analysis (LCA) measurement conditions HCO.fundedby

i Partnership

German Aerospace Center

the European Union

Pressure Dependent (PD) term:
- Fickian diffusion in largest pores (d > mean free path O, ~ 100 nm
@ 80°C, 1bar)

Pressure Independent (Pl) term:

- Knudsen diffusion in smallest pores (d < 100 nm)

- Diffusion within electrolyte (hydrated ionomer and/or water)
- Transfert through gas/electrolyte interface

- Transfert through electrolyte/Pt interface

Hyp.
» Current is limited only by O, transport
and not by H* transport or kinetic

Caution must be taken in the choice of measurement conditions

» RH must be sufficiently high not to be limited by the H* transport
» RH must not be too high to avoid excessive water condensation
» Increased water condensation as current density increases

FURTHER-FC
> J @ 0.2V 80/80%RH, X, < 2%
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O, transport limitations
& Limiting Current Analysis (LCA) results

# Deutsches Zentrum
DLR fiir Luft- und Raumfahrt

i Partnership
German Aerospace Center &

Co-funded by
the European Union
Pressure Dependent (PD) term:

- not impacted by CCL variation
- only impacted if non-reproducible parts of the GDL was used

Pressure Independent (Pl) dominated by CCL composition and
structure and decreases with:

» increasing roughness factor (more active sides)

» decreasing I:C ratio (less ionomer coverage and water)

» GC as Pt support vs HSAC (no diffusion in nanopores)

» increasing Pt:C ratio (thinner CCL)

» HOPI vs D2020, but limited to HSAC support and not visible for GC
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e @ iten, O, transport limitations
}\V o German Aerospace Center

LN Limiting Current Analysis (LCA) results Cofndadby
‘and o the European Union
Limits
-V for different O, concentration > Not possible to dissociate the different contributions in the PI
» Not possible to have reliable information as a function of RH
0.9 80% RH; 2.54 bar » 0O, through-plane transport limitations in the channel
0.8 1 O, concentration at the GDL/channel interface along the channel
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Baker et al. 2009 J. Electrochem. Soc. 156 B991 s
Position along channel / cm
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Limits
-V for different O, concentration > Not possible to dissociate the different contributions in the PI
» Not possible to have reliable information as a function of RH
0.9 80% RH; 2.54 bar » 0O, through-plane transport limitations in the channel
0.8
FURTHER-FC approach:
> — Use numerical models to analyse LCA
_ 06l —> Use LCA to validate the models
>
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Current density / A.cm

Baker et al. 2009 J. Electrochem. Soc. 156 B991
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Decoupling electrokinetic from transport limitations
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S“/{_'fm Decoupling transport from kinetic
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fand to H the European Union

N
@Q\M

Kinetic often described with Butler-Volmer equation

_ _ anF (1—a)nF
Ly = loYcL |€XP <ﬁ 77) — exp —TU

1-a a
iy = ig( a}?f') ( a.‘”) Depends on the local concentration of reactant and product
vj>0 v;<0 - Depends on O, transport limitations

ig = nF (kox) ™ (Kea)”
Depends on the local potential within the electrolyte
N= Q- —Dy+ — Egq - Depends on H* transport limitations

Extremely difficult to decouple kinetics from transport limitations experimentally

0,° +4H"+4e— 2 H,0 [ . Energies of intermediates and transition states )
H":-02 ads
I O2 ads
— [ +l ..
HO—OH AdeS'HwG=0 . H Oads |
Oads' "HO*H
T+H+'e- OOHausadS OHadS H+"'0Hads

+H*,e - H,0 Oads

(OJ
AadsG H ;
& ? 0 Y +H*,e Y +H*e - H,0 L
! I r
oads Oads ﬁ; OZ,BH (0] Ay Oads Oads Oads 9 Oads —% * L

2 sites 1 or 2 sites 2 sites

dissociative associative dissociative associative associative
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Jackson, S Kucernak et al, . ACS Catalysis, 2022, 12(1),
200-211. doi:/10.1021/acscatal.1c03908

Temperature / °C

Conclusion: Pt has plenty of activity
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Conclusions and FURTHER-FC approach

Co-funded by
R the European Union

» Transport limitations very difficult to quantify properly experimentally

» Coupling between transport and electrokinetic will always exist

» Simple Butler Volmer model is insufficient to describe electrochemistry of ORR on Pt

» Not possible to quantify with a simple analytical model the impact of transport losses on performance

FURTHER-FC approach:

Do not use this simplifed analytical approach

—> Compute the transport properties from the « real » structure of the components
- Reduce the number of parameters to be fitted by the model

- Use physical model to directly fit the experimental data

- Quantify the contribution of the different components on the performance losses
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