

Further Understanding Related to Transport limitations at High current density towards future ElectRodes for Fuel Cells

Overview of the project

(JOËI PAUCHET, CEA, IEM, DLR, PSI, ICL, UES, TME, CHEM, INPT, UCA)

liten ceatech	Deutsches Zentrum Für Luft- und Raumfahrt German Aerospace Center	Imperial College London	ΤΟΥΟΤΑ	
	PAUL SCHERRER INSTITUT	ESSLINGEN UNIVERSITY		

Funding

Call year: 2019

Call topic:

FCH-01-04 Towards a better understanding of charge, mass and heat transports in new generation PEMFC MEA for automotive applications

Project dates: 01/01/2020- 31/08/2024

FCH-JU max. contribution: 2 199 567 € Partners contribution: 535 464 €

Context: PEMFC targets for light duty vehicles

Specifications for automotive stack: status and targets

- Reduce cost
- Decrease Pt loading
- Increase performance

Stack performance: status and targets

Increase current density → Larger flux → Larger transport limitations

Nandjou et al., Int. J. Hyd. Energy 41, 2016, 15573

FURTHER-FC project: final workshop, CEA Grenoble

in coupling with transport limitations

CCL performance limitations

Low Pt loaded CCL shows unexplained high losses (ascribed mainly to O_2 transport losses) but kinetic and proton transport contributions on losses are often underestimated

Controling CCL transport limitations

➔ FURTHER-FC aims at better understanding these limitations

Balance between O₂ and H⁺ transport limitations related to ORR

BUT lack of knowledge on : CCL structure (Pt/C, ionomer, pore distributions...) H⁺ and O₂ local and effective transport properties ORR kinetic depending on the local conditions Local operating conditions in CCL Influence of ink composition

Overview of the project - Joël Pauchet (CEA)

Global strategy and developments

• Strong link between models and characterizations to:

- Supply more relevant inputs to the models (gas diffusion, H⁺ and O₂ transports, structure...)
- Validate the models
- Analyze the differences between CCL with different ink formulations
- Analyze performance limitations due to the CCL

• Design, manufacture and test a CCL with higher performance/durability

Overview of the project - Joël Pauchet (CEA)

'Multi-scale approach'

10000 20000 30000 40000 50000

i [A/m²]

FURTHER-FC project: final workshop, CEA Grenoble

Overview of the project - Joël Pauchet (CEA)

0.20

December 11th, 2024

0.00

0.05

0.10

Re(Z) / Ohm cm²

0.15

Customized CCL for characterization **To be updated as necessary**

led by opean Union

Differential cell	Type of study	Catalyst	Pt Loading [μg/cm²]	I/C	lonomer
• SCI 2288	<u>Reference</u>	TKK HSAC 50%	200	0.8	D2020
	Effect of <u>Pt loading (</u> x3) (changing thickness)	TKK HSAC 50%	100 500	0.8	D2020
 Anode constant, 0,1 mgPt/cm² 		TKK HSAC 50%			
 Ref cathode: TEC10E50E, D2020 Ref OC: 80°C, H2/air, RH80, 	Effect of <u>thickness</u> by changing the Pt/C ratio Checked on two Pt loading and on two types of support	TKK Graphitized 30%	- 200	0.8	D2020
Stoe 1.5/2 Focused on LDV but additional 		TKK Graphitized 50%			
tests for HDV (Advisory Board recommendation)	Effect of <u>I/C</u> Ratio (x2) Checked on two type of supports	TKK HSAC 50%	200	0.5	- D2020
				1.1	
TOYOTA Deutsches Zentrum DLR für Luft- und Raumfahrt	Effect of type of <u>ionomer</u> (x2) Checked on two types of support, two thicknesses by changing Pt/C ratio and two I/C	TKK HSAC 50%	200	0.5	
German Aerospace Center		TKK HSAC 50%		0.8	НОРІ
		TKK Graphitized 30%			
		TKK HSAC 50%		1.1	

Characterization of CCL: struc **To be updated as necessary** bed by open Union

As an example (HRTEM, AFM): distributions of ionomer, Pt, pores...

Characterization of CCL: transport **To be updated as necessary**

As an example: transport in thin ionomer film, effective CCL properties

As an example: 3D image-based computation of effective transport properties

ded by

opean Union

To be updated as necessary

Multiscale modeling

More information to come

Clean Hydrogen Partnership Co-funded by the European Union

Characterization of the CCL structure by electron and AFM microscopy (T. Morawietz, Univ. Esslingen; L. Guetaz, CEA) Characterization of transport properties (A. Kucernak, ICL; A. Morin, CEA) Break

Discussion on MEA performance limitations (A. Morin, all) Multiscale modeling performance from µm to cell scales (T. Jahnke, DLR)

FURTHER-FC project: final workshop, CEA Grenoble

Overview of the project - Joël Pauchet (CEA)