

Further Understanding Related to Transport limitations at High current density towards future ElectRodes for Fuel Cells

Electrochemical Characterization

(Jens Mitzel, CEA, DLR, PSI, ICL)

liten ceatech	Deutsches Zentrum Für Luft- und Raumfahrt German Aerospace Center	Imperial College London	ΤΟΥΟΤΑ	
	PAUL SCHERRER INSTITUT	ESSLINGEN UNIVERSITY		

Electrochemical characterization methods in FURTHER-FC for:

• Performance benchmarking

- Investigation of transport properties
- Evaluation of degradation behavior

Electrochemical characterization methods in FURTHER-FC for:

• Performance benchmarking

• Investigation of transport properties

• Evaluation of degradation behavior

Reproducibility and Comparability

- Reliability of test results is key for understanding transport phenomena
- Requires high reproducibility in each lab regarding:
 - Characterization setup
 - Applied test procedures

-> proven

- Requires high reproducibility of CCM manufacturing:
 - using the same manufacturing batch
 - Between different batches
- CCMs from the same batch used for in-depth analysis

in different facilities

Reproducibility and Comparability

technical cell

differential cell

- High importance to achieve comparability of test
 results between different facilities
- Important parameters to achieve comparability:
 - Harmonized flow field design
 - Same MEA compression force
 - Identification of differences in setup (channel length, sensor position, cell cooling,...)

Reproducibility and Comparability

- Optimization and harmonization of test equipment and test protocols required
- High comparability between the partners can be assured in FURTHER-FC using:
 - technical cells: performance and durability validation
 - differential cells: characterization of transport properties

differential cell

Public workshop, 06/07/2022, DLR/Stuttgart + visio

Performance validation Impact of stack position

- Impact of transport properties depends on operating conditions
- Operating conditions in automotive stacks vary significantly along the flow field
- Differential cell conditions can mimic conditions in different positions
- Significant impact by:
 - Oxygen concentration
 - Cell temperature
 - Relative humidity

	Step1: Air inlet	Step 2: Middle	Step3: Air outlet
Cell temperature [°C]	68	77	80
H_2/O_2 content in dry gas at anode/cathode [%]	100/20.8	100/13.6	100/7.7
Total Pressure anode / cathode [bar _{abs}]	2.25/2.3	2.3/2.1	2.5/1.9
RH anode / cathode [%]	100/53	100/100	50/100
Gas inlet temperature anode/cathode [°C]	75/75	84/84	87/87
Min. H_2 / O_2 stoichiometry for 4 cm long channel [-]	8/8	8/5.25	8/3
Min. gas flow according to current density [A/cm ²]	3	3	3

Public workshop, 06/07/2022, DLR/Stuttgart + visio

FURTHER-FC: Electrochemical Characterization

Performance validation Impact of ionomer content

• Reference CCM (I/C=0.8) shows highest

performance

- Lower ionomer content (I/C=0.5) decreases
 performance and activity
- Higher ionomer content (I/C=1.1):
 - decreases performance and activity
 - increase transport resistance at high current density
- Effective proton transport resistance decreases
 - with increasing I/C ratio
 - with increasing relative humidity

Electrochemical characterization methods in FURTHER-FC for:

• Performance benchmarking

Investigation of transport properties

• Evaluation of degradation behavior

Pulse Gas Analysis (PGA) Method

- Helox/oxygen voltage gain measurement for evaluation of mass transport losses
- Classical measurements suffer from artifacts due to:
 - Different physical properties of air, helox and oxygen
 - Different water management
 - Different oxidation states of the catalyst and electrode potential
- PGA only applies helox /oxygen for short periods and operates mainly on air
 - Enables more reliable break down of transport losses

Pulse Gas Analysis (PGA) Impact of current density

PAUL SCHERRER INSTITUT

Bulk diffusion losses only observed at high cathode humidity

« Knudsen+film » diffusion losses dominate, in particular at low humidity

Limiting Current Analysis (LCA) Method

- Potentiostatic limiting current analysis at low oxygen concentration
- Variation of oxygen concentration, total pressure and carrier gas (oxygen diffusion resistance)

Limiting Current Analysis (LCA) Method

$$R_{\text{total}} = R_{dif,P} + R_{dif,0} + R_{\text{other}}$$

 $R_{dif,P}$: pressure dependent resistance (molecular diffusion), $R_{dif,0}$: pressure independent (mostly Knudsen diffusion), R_{other} : transport resistance through other transport processes

R_{dif,0} : Mostly Knudson diffusion:

- y-axis intercept
- p-independant
- In CL / MPL

R_{dif,P} : Molecular diffusion:

- p-dependant
- Slope
- Mainly GDL backing (+ CL / MPL)

- Enables separation of different oxygen transport mechanisms
- $\circ~$ Can improve understanding of oxygen transport effects in different
 - MEA components (GDL, MPL, CL)

Electrochemical characterization methods in FURTHER-FC for:

• Performance benchmarking

• Investigation of transport properties

• Evaluation of degradation behavior

MEA Durability Test profile and conditions

MEA Durability Durability of reference MEA

- Significant performance decay during durability test
- Most severe impact at high current density
- Polarization curve suggest impact by catalyst activity

MEA Durability Durability of reference MEA

Obvious reasons for performance loss over time

- Significant decrease of ECSA and reduced access to catalytic active sides
- Increased polarization resistance
- Increase of transport resistance
 - -> Under investigation

Public workshop, 06/07/2022, DLR/Stuttgart + visio

MEA Durability Durability of reference MEA

Interesting to note:

- HFR seems to be not affected by durability test
 - Only minor impact of membrane degradation
- Effective proton resistance decreased over time
 - Decreased hydrophobicity and higher water content in catalyst layer?

Public workshop, 06/07/2022, DLR/Stuttgart + visio

FURTHER-FC: Electrochemical Characterization

Thank you for your attention. Your questions are welcome!

Public workshop, 06/07/2022, DLR/Stuttgart + visio