

Co-funded by the European Union

Further Understanding Related to Transport limitations at High current density towards future ElectRodes for Fuel Cells

Main progress

from nanometer scale to cell operation

liten ceatech	Deutsches Zentrum Für Luft- und Raumfahrt German Aerospace Center	Imperial College London	ΤΟΥΟΤΑ	
	PAUL SCHERRER INSTITUT	ESSLINGEN UNIVERSITY		

Approach From nm to fuel cell operation

Structure, local and effective properties of the CCL from component to layer

- ightarrow Characterisation and modeling
- \rightarrow Characterisation and simulation of their impact on fuel cell operation

Sub-micrometer structure of CCL Pt size distribution and ionomer vizualisation

Clean Hydrogen Partnership

Catalyst layer

Electron-tomography (TEM)

356 Pt NPs = 294 Inner Pt NPs + 62 Outer Pt NPs

Different types of catalyst (HSA, Graphitized)

Public workshop, 06/07/2022, DLR/Stuttgart+visio

Sub-micrometer structure of CCL Simulation of ionomer structure and coating

Molecular dynamic simulation (MD)

Co-funded by the European Union

Self-assembly on different substrates in IPA

Public workshop, 06/07/2022, DLR/Stuttgart+visio

FURTHER-FC: Main Progress

FURTHER-FC: Main Progress

Sub-micrometer structure of CCL Ionomer coverage and thickness

Atomic Force Microscopy (AFM)

Coverage

MATLAB Evaluation

Clean Hydrogen Partnership Co-funded by the European Union

Thickness

Height Sensor

200.0 nm

Public workshop, 06/07/2022, DLR/Stuttgart+visio

FURTHER-FC: Main Progress

Deformation

200.0 nm

Structure of CCL 3D porous structure

liten ceatech

3D FIB-SEM

Voxel size: 5x5x5 nm³

Measurement of thin ionomer films properties Structure and mechanic

Clean Hydrogen Partnership

Co-funded by the European Union

Measurement of thin ionomer films properties

Clean Hydrogen Partnership

FURTHER-FC: Main Progress

Measurement of CCL properties Transport: local distribution in properties

Co-funded by the European Union

Electronic conductivity

Thermal conductivity

Measurement of CCL properties Transport: effective electronic conductivity

perial College

Imperial College London

- Increase in electronic conductivity as compression is increased
- Little change in conductivity as relative humidity is increased
- Two orders of magnitude lower conductivity in catalyst layer only for in-plane conductivity
- Increase in conductivity as I:C ratio is decreased
- Two orders of magnitude higher conductivity in through-plane vs in-plane

→ RH has little effect on electronic conductivity
→ swelling of ionomer does not affect particle-particle contact

- Increase in proton conductivity as RH increases
- Increase in proton conductivity as I:C ratio increases
- Increase in proton conductivity when using HOPI ionomer
- Decrease in Bruggeman Factor as RH increases
- Little change in Bruggeman Factor with different I:C ratios

Proton conductivity in catalyst layer is liable to be a limiting factor in performance

Computation of properties from 3D structure Transport: (ex. MPL)

Co-funded by **Clean Hydrogen** the European Union

Partnership

GD/MPL compression effect computation via resistance model

Public workshop, 06/07/2022, DLR/Stuttgart+visio

0.1

0.0

0.2

Compression Rate α

0.3

0.5

Simulation of sub-micrometer CL operation Lattice-Boltzmann Modeling

Clean Hydrogen Partnership Co-funded by the European Union

Deutsches Zentrum
für Luft- und Raumfahrt
German Aerospace Center

Local reaction rates within real CCL microstructures

Effect of CL structure on the local ORR rate and transport

Public workshop, 06/07/2022, DLR/Stuttgart+visio

FURTHER-FC: Main Progress

Simulation of sub-micrometer CL operation **Direct numérical simulation**

Co-funded by the European Union

liten ceatech

Local O₂ concentration and current density within real CCL microstructures

Fuel cell characterisations O2 transport limitations

Co-funded by the European Union

PAUL SCHERRER INSTITUT

Pulse Gas Analysis (PGA)

Bulk diffusion losses only observed at high cathode humidity

« Knudsen+film » diffusion losses dominate, in particular at low humidity

Even with these narrow land flow fields, land/channel differences are observed

At full humidity, water saturation is reduced when increasing current density

FURTHER-FC: Main Progress

Co-funded by

the European Union

Local operating conditions Local temperature

Raman microspectroscopy thermography

Local operating conditions Water content in CL

1D SANS profiles during operation

