

Further Understanding Related to Transport limitations at High current density towards future ElectRodes for Fuel Cells

Characterisation of CCL materials - local transport properties and transport-free electrocatalysis

Anthony Kucernak, Imperial College

liten ceatech	Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center	Imperial College London	ΤΟΥΟΤΑ	
	PAUL SCHERRER INSTITUT	ESSLINGEN UNIVERSITY		

FURTHER-FC: Characterisation of CCL materials - local transport properties and transport-free electrocatalysis

Public workshop, 06/07/2022, DLR/Stuttgart + visio

Overview

- Motivation is to measure important parameters in model systems under conditions as close as possible to those which exist in the fuel cell electrode
- The parameters studied are:

Parameter	System components	Conditions	Limiting conditions
Solvent sorption isotherms and wetting properties (water, ethanol, 2-propoanol)	Catalyst, ionomer, catalyst layer	Temperature; Solvent activity;	Steady-state Atmospheric pressure
Electrical conductivity	Catalyst and catalyst layer; in-plane and through-plane;	I:C ratio; Relative humidity; Compression	Steady state; Ionic effects assumed negligible
Proton conductivity	Catalyst layer	I:C ratio; Relative humidity; Ionomer	Platinum removed
ORR electrocatalyst performance ex-situ	Catalyst	½-cell reaction, potential, p _{O2} , T	1 M HClO ₄ electrolyte, Atmospheric pressure
ORR electrocatalyst performance in-situ	Catalyst layer	Potential, p ₀₂ , T	HOR assumed negligible
	FLIRTHER-EC: Characterisation of CCL materials - local		

Public workshop, 06/07/2022, DLR/Stuttgart + visio

Solvent sorption isotherms

Dynamic Vapour Sorption

- Multiple solvents (not just water)
- Determination of both polar and dispersive components of surface tension
- Calculation of spreading pressure

$$\pi_e = \frac{RT}{MS} \int_P^{P'} \frac{Q}{P} dP$$

$$W_{s-l} = 2\gamma_L + \pi_e = 2\sqrt{\gamma_L^d \times \gamma_s^d} + 2\sqrt{\gamma_L^p \times \gamma_s^p}$$

$$\gamma_s = \gamma_s^p + \gamma_s^d$$

- γ_s = surface tension of the catalyst
- γ_s^d = dispersive component of catalyst surface tension,
- γ_s^p = polar component of catalyst surface tension,
- γ_L = surface tension of the liquid,
- π_e = spreading pressure (θ =0°),
- W_{s-l} = Work of adhesion,

M = molar mass of liquid, S = specific surface area, T = temperature and R = gas constant and Q = total amount adsorbed.

Public workshop, 06/07/2022, DLR/Stuttgart + visio

Solvent sorption isotherms and analysis

- The catalyst layers did not adsorb IPA or ethanol until partial pressures of above 60%.
- Hydrophilicity of the catalyst layer is 37% of what is expected from simple addition of components, while IPA is 30% and ethanol is 46%.
- Similar polar components of the surface tension for the catalyst powder and layers, but the dispersive component, the van der Waals influence, of the surface tension on the catalyst layer is 10x lower than on the catalyst powders, similarly, the spreading pressure is ~5x lower on the catalyst layers.

Catalyst layer wetting properties does not seem to be a simple combination of the individual components

 γ_s^d = dispersive component of catalyst surface tension, W_{s-l} = Work of adhesion,

 γ_s^p = polar component of catalyst surface tension,

 γ_L = surface tension of the liquid,

M = molar mass of liquid, S = specific surface area, T = temperature and R = gas constant and Q = total amount adsorbed.

Electronic conductivity

- Electronic conductivity measured under environmental control (T, RH%)
- 4-probe contact measurement on appropriate samples
- Controlled compression
- High performance/accuracy system DMM (1 $\!\mu\Omega$ resolution)
- "Dry circuit resistance" 4-probe resistance measurements (20mV)
 - Avoid driving electrochemical reactions

FURTHER-FC: Characterisation of CCL materials - local transport properties and transport-free electrocatalysis

Keithley 3706A System Switch/Multimeter 5

Electronic conductivity

- Increase in electronic conductivity as compression is increased
- Little change in conductivity as relative humidity is increased
- Two orders of magnitude lower conductivity in catalyst layer only for in-plane conductivity
- Increase in conductivity as I:C ratio is decreased
- Two orders of magnitude higher conductivity in through-plane vs in-plane

RH has little effect on electronic conductivity → swelling of ionomer does not affect particleparticle contact

Low overburden potential (20 mV)

transport properties and transport-free electrocatalysis

Ë

/ity/

400 O

600 Cond

800

1000

Proton conductivity

Hiroshi Iden et al 2008 ECS Trans. 16 1751 Hiroshi Iden et al 2009 J. Electrochem. Soc. 156 B1078

Proton conductivity

• Increase in proton conductivity as RH increases

- Increase in proton conductivity as I:C ratio increases
- Increase in proton conductivity when using HOPI ionomer
- Decrease in Bruggeman Factor as RH increases
- Little change in Bruggeman Factor with different I:C ratios
- As Bruggeman Factor <1, conductivity is less strongly affected by increases in ionomer

Electrocatalysis

Ultra-low loading electrodes – Ex situ

E / V vs/ RHE

C. M. Zalitis, D. Kramer and A. R. Kucernak, "Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport." *Phys. Chem. Chem. Phys.*, 15, 4329, (2013).

Electrocatalysis

Ultra-low loading electrodes – Ex situ

• Performance as function of E,T

FURTHER-FC: Characterisation of CCL materials - local transport properties and transport-free electrocatalysis 0.8

1.0

Thank you for your attention. Your questions are welcome

Public workshop, 06/07/2022, DLR/Stuttgart + visio

times 1

Coordinator: J. Pauchet (CEA); joel.pauchet@cea.fr 12

Imperial College London

Imperial College London

FURTHER-FC: Introduction Imperial

Co-funded by

the European Union

Clean Hydrogen Partnership

Imperial College London

Imperial College London

- Electrocatalysis including non precious metal catalysts (e.g. Crescendo)
 Hydrogen purification/hydrogen pumps (Memphys)
- Hydrogen fuel cells and electrolysers including alkaline membrane systems
- Redox flow batteries, especially H₂-X (X=Mn, Organic, V, Br₂...)

of. Anthony Kucernak

• Spinout companies:

High volume fuel cell and electrolyser manufacture

Grid scale electricity storage

Imperial College London

Imperial College London

- Contribution to project
 - WP1:SPECIFICATION, VALIDATION AND RECOMMENDATION
 - Ultra low loading CCMs
 - WP2: CHARACTERIZATION OF CCL STRUCTURE AND COMPONENT PROPERTIES
 - Effective transport properties in the CCL
 - WP3: ADVANCED OPERANDO DIAGNOSTICS AND PERFORMANCE LIMITATIONS
 - Toward operando fundamental electrochemistry

