

News: Multiscale modeling of PEMFC performance

FURTHER-FC Newsletter #3 Further Understanding Related to Transport limitations at High current density towards future ElectRodes for Fuel Cells

FURTHER-FC TOOLBOX

The identification of transport limitations and simulation		<u> </u>
based recommendations for improved Cathode Catalyst	ALS HOLE	
Layer (CCL) design and materials are among the main		
goals of the project Further-FC. To achieve these goals a		
		40

Ambition

10 ⁻¹⁰ m	FURTHER TOOLBOX						
	CCL (TME, CHEM, ICL, CEA)	Molecular Dynamic -MD	Lattice- Boltzmann -LB	Direct Numerical Simulation -	Electrokinetic Model - EM (ICL)	Pore Network Modeling - PNM	Continuous Performance Model – CPM
	Reference (TME, CC)	(UCA) Ionomer	<i>(DLR)</i> Transport	DNS (CEA)	Exchange	Two phase flow	(DLR)
10-9 m	Customized (TME, CC)	structure & properties	Sub µmeter scale	Sub µmeter	depending on	scale	Electrochemistry
10 ° 111	Composition <u>New</u> ionomer – I <i>(CC)</i>			MODE		+ IVIPL + GDIVI	
	Original Catalyst – Pt/C (TME) Formulation I/C Ratio						
	Pt & C density in CCL	EXPERIMENTS					
10 ⁻⁷ m	Pt loading Thickness	Components & CCL properties	Microstructure	<i>Operando</i> Local conditions	Electrochemical measurements	Mass transfer limitations in	Performance and durability
Model (ICL, CEA) Ultrathin (ICL) Ionomer &Pt free (CEA)	(UES, UCA, ICL, CEA) Ionomer, C H ⁺ , e ⁻ , Heat, Hydrophilicity	<i>(CEA, UES)</i> 3D Pt, C, lonomer, pore distributions	(PSI, IEM, CEA) T, RH, H ₂ O H ⁺ & O ₂ Activities	Free of transport (ICL) Electrokinetic data	differencial cell (PSI, CEA, DLR) O ₂ , H+ overvoltages	tests in real conditions (DLR, CEA) I-V, μV/h	
	10 ⁻¹⁰ m 10 ⁻⁹ m	10 ⁻¹⁰ m CCL (TME, CHEM, ICL, CEA) Reference (TME, CC) Customized (TME, CC) Customized (TME, CC) Composition New ionomer – 1 (CC) Original Catalyst – Pt/C (TME) Formulation I/C Ratio Pt & C density in CCL Design Pt loading Thickness Model (ICL, CEA) Ultrathin (ICL) Ionomer &Pt free (CEA)	10 ⁻¹⁰ m CCL (TME, CHEM, ICL, CEA) Reference (TME, CC) Customized (TME, CC) Customized (TME, CC) Composition New ionomer – I (CC) Original Catalyst – Pt/C (TME) Formulation I/C Ratio Pt & C density in CCL Design Pt loading Thickness Model (ICL, CEA) Ultrathin (ICL) Ionomer, C H ⁺ , e ⁻ , Heat, Hydrophilicity	10-10 mCCL (TME, CHEM, ICL, CEA) Reference (TME, CC)Molecular Dynamic -MD (UCA) Ionomer structure & propertiesLattice- Boltzmann -LB (UCA) Ionomer structure & properties10-9 mCustomized (TME, CC) Composition New ionomer - I (CC) Original Catalyst - Pt/C (TME) Formulation I/C Ratio Pt & C density in CCL Design Pt loading ThicknessMolecular Dynamic -MD (UCA) Ionomer structure & propertiesLattice- Boltzmann -LB (DLR) Transport Sub µmeter scale10-7 mModel (ICL, CEA) Ultrathin (ICL) Ionomer &Pt free (CEA)Microstructure (UES, UCA, ICL, CEA) Ionomer, C H+, e', Heat, HydrophilicityMicrostructure (CEA, UES) 3D Pt, C, Ionomer, pore distributions	10-10 mCCL (TME, CHEM, ICL, CEA) (TME, CHEM, ICL, CEA)Molecular Dynamic -MD (UCA) Ionomer structure & propertiesLattice- Boltzmann -LB (DLR) Transport Sub µmeter scaleDirect Numerical Simulation - DNS (CEA) Transport Sub µmeter scale10-9 mCustomized (TME, CC) Composition New ionomer - I (CC) Original Catalyst - Pt/C (TME)Molecular U(CA) Ionomer + I (CC) Original Catalyst - Pt/C (TME)Molecular Dynamic -MD (UCA) Ionomer + I (CC)Direct Numerical Simulation - DNS (CEA) Transport Sub µmeter scale10-7 mModel (ICL, CEA) Ultrathin (ICL) Ionomer & Pt free (CEA)Microstructure (CEA, UES) 3D Pt, C, Ionomer, pore distributionsOperando Local conditions (PSI, IEM, CEA) T, RH, H ₂ O H * & O_2 Activities	10 ⁻¹⁰ m CCL (<i>TME</i> , <i>CHEM</i> , <i>ICL</i> , <i>CEA</i>) Reference (<i>TME</i> , <i>CC</i>) Customized (<i>TME</i> , <i>CC</i>) Composition New ionomer −1 (<i>CC</i>) Original Catalyst – Pt/C (<i>TME</i>) Formulation I/C Ratio Pt & C density in CCL Design Pt loading Thickness Model (<i>ICL</i> , <i>CEA</i>) Ultrathin (<i>ICL</i>) Ionomer & Pt free (<i>CEA</i>) Molecular Dynamic -MD (<i>UCA</i>) Ionomer structure & properties Molecular Dynamic -MD (<i>UCA</i>) Ionomer scale Molecular Dynamic -MD (<i>DLR</i>) Transport Sub µmeter scale MODELLING <i>MODELLING</i> <i>MODELLING</i> <i>Design</i> Pt loading Thickness <i>Model</i> (<i>ICL</i> , <i>CEA</i>) Ultrathin (<i>ICL</i>) Ionomer & Pt free (<i>CEA</i>) <i>Model</i> (<i>ICL</i> , <i>CEA</i>) <i>Ultrathin</i> (<i>ICL</i>) Ionomer & Pt free (<i>CEA</i>) <i>Model</i> (<i>ICL</i> , <i>CEA</i>) <i>Direct</i> <i>Numerical</i> <i>Sub</i> µmeter <i>scale</i> <i>Direct</i> <i>Numerical</i> <i>Model</i> <i>CL</i> properties <i>Microstructure</i> (<i>CEA</i> , <i>UES</i>) <i>3D</i> Pt, C, Ionomer, pore distributions <i>Pt</i> & 02 <i>Activities</i> <i>Design</i> <i>Pt</i> loading <i>T</i> , RH, H ₂ O <i>H</i> ⁺ , e', Heat, <i>Hydrophilicity</i> <i>Microstructure</i> <i>(CEA</i> , <i>UES</i>) <i>SD</i> Pt, C, Ionomer, pore <i>Activities</i> <i>Design</i> <i>Pt Activities</i> <i>Design</i> <i>Pt Activities</i> <i>Activities</i> <i>Design</i> <i>Pt Activities</i> <i>Design</i> <i>Pt Activities</i> <i>Design</i> <i>Pt Activities</i> <i>Design</i> <i>Pt Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Pt Activities</i> <i>Design</i> <i>Pt Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i> <i>Activities</i> <i>Design</i>	10 ⁻¹⁰ m CCL (TME, CHEM, ICL, CEA) 10 ⁻⁹ m 10 ⁻⁹ m 10 ⁻⁷ m 10 ⁻⁷ m 10 ⁻¹⁰ m CCL (TME, CHEM, ICL, CEA) New ionomer − 1 (CC) Original Catalyst – Pt/C (TME) Molecular Dynamic-MD (UCA) Ionomer Structure & properties Molecular Dynamic-MD (UCA) Ionomer Structure & properties Molecular Dynamic-MD (UCA) Ionomer Structure & properties Molecular Dynamic-MD (UCA) Ionomer Structure & properties Molecular Dynamic-MD (UCA) Ionomer Structure & properties Molecular Dynamic-MD (UCA) Ionomer Structure & properties Microstructure (CEA, UES) 3D Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) 3D Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) 3D Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES) SD Pt, C, Ionomer, C H ⁺ , e ⁺ , Heat, Hydrophilicity Microstructure (CEA, UES)

- multiscale modeling approach is developed, capturing the relevant processes on all length scales:
- Oxygen and water transport in the ionomer film with Molecular Dynamics
- Mass transport and electrochemistry on the submicrometer scale with Lattice-Boltzmann Modeling and Direct Numerical Simulation (DNS)
- Mass and heat transport on the catalyst layer scale with Pore Network Modeling and DNS
- Combination of all relevant processes at single cell scale with volume averaged models
- To connect the approaches upscaling from lower to higher scale models is performed.

https://further-fc.eu/

Recent Results

Molecular dynamics on ionomer film scale (University of Calgary)

 Realistic ionomer structure on Pt/C (Platinum on Carbon) catalyst accounting for Pt nanoparticle (NP) morphology and ionomer organization in catalyst ink is critical first step for study of ionomer properties. Key findings are put together in a manuscript under review [1]

Dispersion ²⁶	Platinum surface	Carbon surface	Pt/C	
	Allanda a Allanda	an Brachling of	43m ² 5	

80 -			

- Self assembled ionomer on three different substrates planar carbon, planar Pt, and Pt NP on carbon in different dispersion media were simulated (Figure 1).
- Ionomer coverage (Figure 2): Ionomer coverage on Pt is strongly influenced by dispersion media (28% coverage in isopropanol (IPA) to 72% coverage in water) but less so on carbon (44-54% coverage). Partial coverage is observed on Pt/C (32-44%)
- Interfacial structure: High abundance of sulfonic acid groups at Pt/ionomer interface is observed in water and lesser in IPA and IPA/Water mix (Figure 3). Expectedly, no ionic groups are seen at Carbon/Ionomer interface. Local structure analyses of SO₃⁻ (Figure 4) shows that two of the three oxygen atoms are bound to Pt and third atom is slightly away. Effectively SO₃- occupies three (3) Pt sites under no polarization or point of zero charge condition.

Figure 1. Self assembled ionomer on different substrates [1]

Figure 3. Abundance of sulfonic acid groups (a) and hydronoium ion (b) at the substrate ionomer interface [1]

Figure 2. Effect of dispersion media on ionomer coverage on different substrates.

Figure 4. O-atom in SO_3^- orientation and coordination with Pt nanoparticle [1]

DNS on sub-µm scale (French Alternative Energies and Atomic Energy Commission)

DNS simulations : agglomerate modeling is now possible up to 32x32x32 voxels (=160x160x160nm), as shown in figure 5. The represented domain in the pores+ionomer phase.

Platinum particles are distributed randomly over the carbon surface, according to a pre-determined particle size statistical distribution. The particles are considered as half "flooded" spheres in the carbon (so half of the sphere is in contact with the ionomer).

For now, **3 different portions of the catalyst layer** have been simulated to evaluate the current density discrepancies (table 1). Differences are observed in performance, but more portions have to be simulated to be conclusive.

Figure 6. Platinum particle distribution

uclisity (A/III ⁻)
1.88*10 ⁴
1.65*10 ⁴
1.84*10 ⁴

Table 1. Simulation results

Figure 5. Example of DNS simulation domain

Reference:

[1] A. Tarokh, K. Karan, M. Khallgollah, M. Rioz, S. Ponnurangam (2022), J. Phys Chem C (under review)

Deutsches Zentrum DLR für Luft- und Raumfahr

PAUL SCHERRER INSTITUT

liten

Ceatech

FURTHER-FC Newsletter #3 Further Understanding Related to Transport limitations at High current density towards future ElectRodes for Fuel Cells

DNS and pore network modeling of MPL/GDL (National Polytechnic Institute of Toulouse)

INP

UNIVERSITY OF

DNS are performed on 3D digital images of component microstructures obtained by FIB-SEM (Focused Ion Beam Scanning Electron Microscopy, CCL) or a combination of FIB-SEM and X-ray tomography (gas diffusion layer, GDL).

Imperial College

Hochschule Esslingen University of Applied Sciences

London

ΤΟΥΟΤΑ

Chemours"

This allows computing macroscopic properties such as,

the effective diffusion tensor

Pore size distributions are determined by extracting the pore network from the 3D digital Images of microstructures using the open source softwares Porespy and OpenPNM

Results are in good agreement with experimental data obtained by Mercury intrusion porometry.

- the thermal conductivity tensor
- the electrical conductivity tensor

Figure 6. 3D digital image of GDL combining X-ray Tomography (fibrous medium, cracks) and FIB-SEM (MPL matrix)

- Simulations show the importance of Knudsen diffusion
- Impact of cracks in the MPL (MicroPorous Layer) on the

Figure 7. Pore and Carbon grain network extracted from a MPL matrix 3D FIB-SEM image using Porespy / OpenPNM

- Computations of effective properties on the extracted networks (solid phase network and pore network) are validated against DNS results.
- Network computations of effective properties are much faster than DNS

oxygen diffusive transport through the GDL has been assessed.

Volume averaged multi-scale modeling of single cells (German Aerospace Center)

A 2D differential cell model has been implemented in the DLR modeling framework NEOPARD-X. The model includes formulations for

- Two-phase multicomponent transport
- Energy transport
- Charge transport
- Water sorption kinetics
- Transport through the ionomer film
- Gas crossover through the membrane
- Hydrogen Oxidation Reaction (HOR) and Oxygen Reduction Reaction (ORR) kinetics
- Platinum oxide formation

In the course of the project the initial sub-models will be revised and

improved based on the outcomes obtained from the lower scale models.

An **in-depth model validation** with dedicated experiments performed in differential cells is on-going in order to identify the accuracy and limitations of the current model. These experiments include

- Polarization curves with various O₂ concentration in N₂ and He
- Impedances under H_2/air and various oxygen concentrations
- Impedances under H_2/N_2
- Limiting current measurements in nitrogen and helium

First simulation results suggest the importance of the ionomer film resistance as well as of the cracks in the MPL for an accurate description of the cell performance.

Acknowledgement

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No **875025**. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 10000 20000 30000 40000 50000 i [A/m²] Figure 10. Validation with polarization curves

Contacts:

tobias.morawietz@hs-esslingen.de joel/.pauchet@cea.fr